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Using a new quasi-sphere model, an analytical method is presented to determine the
material properties and stress concentration factors of rubber-toughened polymers. The
calculation is simple and the closed form results fit quite well with experimental data
and various results using the finite element method. This simple and efficient method can
be easily used to calculate a huge amount of results to fit the requirement of engineering.
Also, this type of modeling can provide a better understanding of deformation mechanisms
for development of this important composite material. C© 1999 Kluwer Academic
Publishers

1. Introduction
Certain types of polymeric material are relatively brit-
tle, and are often toughened by adding rubber particles.
The dispersion of rubber particles in the polymer matrix
causes stress concentration. The mechanism of tough-
ening, which is still a subject of controversy, can be
mainly described in two aspects: one is shear yielding,
or shear banding and the other is internal cavitation, or
interfacial debonding [1–5]. It can be better understood
by examination of stress concentration and distribution
derived from a theoretical model.

There were few attempts to predict the mechanical
properties of the rubber toughened materials [6–9] us-
ing a finite element method (FEM). In general, 3-D
FEM is very complex and needs the many cells for this
type of material with its stress concentration and com-
plex structure. Recently, Chen and Mai have used a 3-D
model to analyze this problem [10], but the element of
their micromechanical model is not small, enough es-
pecially in regions where the stresses are comparatively
large. The most commonly used model is an axisym-
metric model [6–8], based on the assumption that the
material consists of cylinders, and each contains a rub-
ber sphere in the center. But, this model does not reflect
the overall isotropy of the material, so the results are
somewhat questionable. Also, a 2-D model is used [8]
which is of course more suspicious.

A better statistical isotropic model is the sphere
model, based on the assumption that the material con-
sists of spheres, each containing a rubber sphere in the
center. It is well known that composite spheres′ assem-
blage theory can be used to determine the bulk modulus
of statistically isotropic composites, such as rubber-
toughed polymers [11]. It’s simple, but the detailed in-
formation such as stress concentration and other elastic
properties are needed.

Therefore, the FEM method is used to give out the
material properties of this composite material [9]. But,
the result seems quite limited and sometimes inac-
curate. One reason is, for statistically distributed and
unique sized particles, even the best-packed spheres
can only occupy 74% of the whole space in the unit
cell. A complete neglect of the remaining 26%, or in
another word, averaging them into spheres may cause
a big difference in the experiment results [12, 13].

Using the sphere model, in this paper, an analytical
method is presented to determine the material prop-
erties and stress concentration factors of the rubber-
toughened polymers. The remaining 26% of the matrix
is also considered, but simplified by two reasonable as-
sumptions. So, this model can be called a quasi-sphere
model. The calculations are simple and the results fit
quite well with experiment results.

2. Principles
An axisymmetric sphere model is chosen, as shown in
Fig. 1. In spherical coordinates the Laplace equation
becomes [14]

∇2ψ = 1
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In an axisymmetric condition,ψ is independent ofθ , it
can be written by separation of variables as:

9 = ARn Pn(ζ )+ B
1

Rn
Pn(ζ ) (2)
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Figure 1 Spherical model.

where,ζ = cosϕ andPn(ζ ) is a Legendre polynomial
of degreen, which satisfies the equation

(1− ζ 2)
d2Pn(ζ )

dζ 2
− 2ζ

d Pn(ζ )

dζ
+ n(n+ 1)Pn(ζ )= 0

(3)

By Rodrigues’s formula,Pn(ζ ) can be written as

Pn(ζ ) = 1

2nn!

dn(ζ 2− 1)n

dζ n
(4)

So,P0(ζ )= 1, P1(ζ )= ζ , P2(ζ )= 1
2(3ζ 2− 1), P3(ζ )=

1
2(5ζ 3− 3ζ ), P4(ζ )= 1

8(35ζ 4− 30ζ 2+ 3) . . .
These polynomials form an orthogonal set across the

region of−1≤ ζ ≤ 1. A Papkovich-Neuber’s solution
of the Navier equations can be used. The displacement
vector exclusive of body forces can be written as

Eu = 4(1− ν) EB−∇⇀( ER · EB+ B0) (5)

where EB is a harmonic vector andB0 is a harmonic
function. In spherical coordinates, the displacements
become:

uR = 4(1− ν)BR− ∂

∂R
(RBR+ B0), uθ = 0

and

uϕ = 4(1− ν)Bϕ − 1

R

∂

∂ϕ
(RBR+ B0) (6)

The following can be taken as the spherical components
of a harmonic vector:

BR =
∑

n

Rn+1{−An(n+ 1)Pn(ζ )

+ ζ Pn+1(ζ )[ An(n+ 1)+ A′n+1]}

and

Bϕ = −
∑

n

Rn+1{An P′n(ζ )

+ Pn+1(ζ )[ An(n+ 1)+ A′n+1]} sinϕ (7)

The harmonic function can be chosen as

B0 = −
∑

n

Bn Rn Pn(ζ ) (8)

After substitution and simplification, we can get:

uR =
∑

n

[
An(n+ 1)(n− 2+ 4ν)Rn+1

+ BnnRn−1]Pn(ζ )

uϕ =
∑

n

[
An(n+ 5− 4ν)Rn+1+ Bn Rn−1] d

dϕ
Pn(ζ )

(9)

This is the general solution of the “interior problem”
for an axisymmetrically loaded solid sphere. The so-
lution of “exterior problem”, or an axisymmetrically
loading on a spherical hole in an infinite solid, can be
obtained from the previous solution by replacing n with
−(n+ 1) but noting thatP−(n+1) = Pn. From this, we
obtain

uR =
∑

n

[
Cn

Rn
n(n+ 3− 4ν)− Dn(n+ 1)

Rn+2

]
Pn(ζ )
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∑
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]
d

dϕ
Pn(ζ )

(10)

For hollow sphere, it can be obtained that:

uR =
∑

n

[
An(n+ 1)(n− 2+ 4ν)Rn+1+ BnnRn−1

+ Cn

Rn
n(n+ 3− 4ν)− Dn(n+ 1)

Rn+2

]
Pn(ζ )

uϕ =
∑
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An(n+ 5− 4ν)Rn+1+ Bn Rn−1
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Rn
(−n+ 4− 4ν)+ Dn
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]
d
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Pn(ζ ) (11)

Or, we can use a simplified form:

uR = R
∑

n

ūn
RPn(ζ )

(12)

uϕ = R
∑

n

ūn
ϕ

d

dϕ
Pn(ζ )

where

ūn
R = Ān(n+ 1)(n− 2+ 4ν)R̄n + B̄nnR̄n−2

+ C̄n

R̄n+1
n(n+ 3− 4ν)− D̄n(n+ 1)

R̄n+3

ūn
ϕ = Ān(n+ 5− 4ν)R̄n + B̄n R̄n−2

+ C̄n

R̄n+1
(−n+ 4− 4ν)+ D̄n

R̄n+3

and

R̄= R/b, Ān = Anbn, B̄n = Bnbn−2,

C̄n = Cnb−n−1, D̄n = Dnb−n−3.
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Then, the strains and stresses can be determined. The
stresses become:

1

2G
σRR=

∑
n
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We can also use another form:

1

2G
σRR=

∑
n

σ̄ n
RRPn(ζ ) (17)

1

2G
σRϕ =

∑
n

σ̄ n
Rϕ

d

dϕ
Pn(ζ ) (18)

1

2G
σϕϕ =

∑
n
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ϕϕPn(ζ )+

∑
n
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ϕϕctgϕ

d

dϕ
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(19)
1
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∑
n
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θθ Pn(ζ )+

∑
n

σ̄ n∗
θθ ctgϕ

d

dϕ
Pn(ζ ) (20)

Figure 2 Micromechanical model.

Furthermore, we can choose a face-centered model
as shown in Fig. 2a. Then, cut out a unit cell with four
spheres to discuss as shown in Fig. 2b. Of course, the
stresses and displacements of each sphere are not ex-
actly axisymmetric. But, they can be taken as approxi-
mately axisymmetric when the volume fraction of the
particles is not very large. Therefore, we can use the
above theory.

As the sphere is symmetric with regard to the equator,
n should be an even number. To simplify the situation,
we choosen as equal to 0 and 2. So, there are 6 unknown
parametersA0, D0, A2, B2,C2, D2, B0 andC0 that do
not appear from the above formulas.

The boundary conditions must now be considered.
First, we will discuss the boundary conditions of the
rubber sphere.

(1) The Young’s modulus of the rubber sphere is
much smaller than that of the matrix, but it has a high
bulk moduluskru when there isn’t debonding or cavi-
tation. So, we only need to consider the uniform radial
stress ¯σ 0

RR. Then, we have

ε0
RR

∣∣
R=a =

1

3kru
σ 0

RR

∣∣
R=a (21)

or in another form

σ̄ 0
RR

∣∣
R=a =

1+ ν
1− 2ν

λū0
RR

∣∣
R=a (22)

where,kru = Eru

3(1−2νru ) · λ = kru

k is the ratio of bulk
modulus of the rubber and matrix.

If debonding is complete or the bulk modulus of the
rubber sphere is much smaller than Young’s modulus
of the matrix, the rubber sphere can be taken as a void,
λ→ 0,

σ̄ 0
RR

∣∣
R=a = 0 (23)

(2) As we have mentioned before, only the uniform
radial stress ¯σ 0

RR needs to be considered, so, ¯σ 2
RR and

τ̄ 2
Rϕ should be zero.

σ̄ 2
RR

∣∣
R=a = 0 (24)

and (3)

τ̄ 2
Rϕ

∣∣
R=a = 0 (25)

Next, we consider the boundary conditions of the big
sphere.
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(4) The average stress of the horizontal area, or equa-
tor area, isσ1. So that∫

Ah

∫
σϕϕ

∣∣∣∣
ϕ= π

2 ,R=b

d Ah = πb2σ1 (26)

where,Ah is the horizontal circle area.d Ah = Rdθ d R.
(5) The average stress of arbitrary longitude area is

σ2. So that ∫
Aν

∫
σθθ d Aν = πb2σ2 (27)

where,Aν is the area of the vertical or longitude area,
d Aν = Rdϕ d R. Now, we derive the compatibility con-
dition of the displacements.

(6) The horizontal square ABCD should keep its
square shape after deformation. So, from Fig. 3a, it can
be seen that the strain of the diagonal must be equal to
the strain of the square. Then, we obtain

ε2|AB = ε2|ϕ=0,R=b (28)

where,ε2|ϕ=0,R=b is the transversal strain of the sphere,
ε2|AB is the strain of the square area along AB.



2(1+ ν)(1− λ) −2+ 4ν− λ(1+ ν)
(1− 2ν)ā3 0 0 0 0

0 0 −6νā2 2 −4(5− ν)
ā3

12
ā5

0 0 (7+ 2ν)ā2 1 2(1+ ν)
ā3

−4
ā5

−2(1+ ν) 2 3
2(1− ā4)(7+ ν) 2(1− ā2) 2

(
1
ā − 1

)
(1− 2ν) 3

(
1
ā3 − 1

)
−2(1+ ν) 2 −3

4(1− ā4)(7+ ν) −(1− ā2) −( 1
ā − 1

)
(1− 2ν) −3

2

(
1
ā3 − 1

)
0 0 7− 10ν 0 −3 2

5


·



Ā0

D̄0

Ā2

B̄2

C̄2

D̄2



=



0

0

0

(1+ ν) σ1

E

(1+ ν) σ2

E

0


where,ā = a/b.

Simplified the above determinant, we can write in another form:



2(1+ ν)(1− λ)ā3 −2+ 4ν− λ(1+ ν)
1− 2ν 0 0 0 0

−2(1+ v) 2 0 0 0 0

0 0 −6νā7 2ā5 −4(5− ν)ā2 12

0 0 (7+ 2ν)ā7 ā5 2(1+ ν)ā2 −4

0 0 3
2(7+ ν) 2 −2(1− 2ν) −3

0 0 7− 10ν 0 −3 2
5


·



Ā0

D̄0

Ā2

B̄2

C̄2

D̄2


=



0
(1+ ν)

3
σ1+ 2σ2

E

0

0
2(1+ v)

3
σ1− σ2

E

0



We also know that the vertical square ABA′B′ should
keep its rectangular shape after deformation, as shown
in Fig. 3b

ε2|ϕ= π

4 ,R=b = ε2|AB (29)

So, we obtain that

ε2|ϕ= π

4 ,R=b = ε2|ϕ=0,R=b (30)

where

ε2|ϕ= π

4 ,R=b =(√
2

2
uϕ

∣∣∣∣
ϕ= π

4 ,R=b

+
√

2

2
uϕ

∣∣∣∣
ϕ= π

4 ,R=b

)/(√
2

2
b

)
ε2|ϕ=0,R=b = uϕ|ϕ=0,R=b/b

After substitution and simplification, we get

ū2
R

∣∣
R=b = 2ū2

ϕ

∣∣
R=b (31)

So, we have got 6 linear equations to solve the 6 un-
known parameters:
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Figure 3 Displacements of the horizontal (a) and longitudinal (b) sec-
tions.

Figure 4 Macromechanical resolution of stress into two parts: dilatation
stress and nondilatation stress.

We have seen that if debonding is complete or the
bulk modulus of the rubber sphere is very small, the
rubber sphere can be taken as a void, thenλ → 0.

B̄2= 2(1+ ν)(196− 126ā5+ 175ā7− 420ν+ 200ν2− 25ν2ā7)

3 f (ā, ν)

σ ∗∗

E
(38)

Solving these function groups, we can get all the pa-
rameters,

Now, the problem that we have to discuss is that even
the best-packed statistical unique sized particle spheres
can only occupy 74% of the whole space. So, how can
we deal with the remaining 26% of the matrix?

We can resolve the stresses into two parts, dilata-
tion stress and non-dilatation stress. For example, the
uniaxial tension can be resolved as shown in Fig. 4.

2.1. Dilatation stress
We could average the remaining 26% of matrix into
spheres, which will get the same results with composite
spheres’ assemblage theory.

Ā0 =
−2+ 4ν− λ(1+ ν)

6[2(1− ā∗3)(1− 2ν)+ λ(1+ 2ā∗3+ ν− 4νā∗3)]

σ

E

(32)

D̄0 =
−ā∗3(1− λ)(1+ ν)(1− 2ν)

3[2(1− ā∗3)(1− 2ν)+ λ(1+ 2ā∗3+ ν− 4νā∗3)]

σ

E

(33)

Ā2 = B̄2 = C̄2 = D̄2 = 0 (34)

whereā∗3 = Vf

2.2. Non-dilatation stress
The rest of the matrix can be thought of as a three-
dimensional net between spheres, as shown in Fig. 2. It
is well known that, the rigidity of a net is low under this
kind of stress. To simplify the problem, we assume that
neglecting its effect on general rigidity will not cause
a significant error when the volume fraction of rubber
particle is not very large. And, because of the rest of the
matrix is comparatively far from the stress concentra-
tion area, we can assume the rate of its horizontal and
vertical stresses to be equal to the remote stress, which
means

σ2/σ1 = (−σ/3)/(2σ/3) (35)

Then, we obtain

Ā0 = D̄0 = 0 (36)

Ā2 = 20ā3(1− ā2)(1+ ν)

f (ā, ν)

σ ∗∗

E
(37)

C̄2 = 5ā3(1+ ν)(28+ 7ā7− 40ν + 5νā7)

3 f (ā, ν)

σ ∗∗

E
(39)

and

D̄2 = 2ā5(1+ ν)(28+ 7ā7− 40ν + 5νā7)

f (ā, ν)

σ ∗∗

E
(40)

where,

σ ∗∗ = σ1− σ2, ā3 = Vf /0.74,

andVf is the volume fraction of rubber particle.

f (ā, µ) = 7(56+ 25ā3− 117ā5+ 50ā7− 14ā10)

− 105ν(8− 5ā3− 3ā5)+ 50ν2(8− 8ā3

−ā7+ ā10)

Now, we extrapolate the results of the sphere to the
upper surface of the rest of the matrix (the shadow part
in Fig. 2b), the stress of that is
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σ1m ≈ σRR|R=1.4142b,ϕ=0 = ψ(ā, ν) · σ ∗∗ (41)

where

ψ(ā, ν) = σRR|R=1.4142b,ϕ=0

σ ∗∗

=
[
−12ν

E

σ ∗∗
Ā2+ 2

E

σ ∗∗
B̄2

−
√

2(5− ν)
E

σ ∗∗
C̄2+ 3

2

√
2

E

σ ∗∗
D̄2

]/
(1+ ν) (42)

can be easily obtained from Equation 36 to Equation 40.
Now, σ ∗∗ is still unknown. Then, from the equation of
equilibrium, it can be obtained that

2

3
σ ∗∗

π

2
b2+ψ(ā, ν)·σ ∗∗

(
2− π

2

)
b2 = 2

3
σ ·2b2 (43)

And, we get

σ ∗∗ = σ
/[

π

4
+ 1.5ψ(ā, ν) ·

(
1− π

4

)]
(44)

After substitution, we have

σ ∗∗ = f (ā, ν)

g(ā, ν)
σ (45)

where

g(ā, ν)= [392+ 31.22ā3− 659.1ā5+ 350ā7− 94ā10]

+ ν[−840+ 508.1ā3+ 270ā5− 6.8ā10]

+ ν2[400− 344.5ā3− 50ā5+ 43ā10]

After superposition, in general, it can be obtained that

Ā0 =
−2+ 4ν − λ(1+ ν)

6[2(1− Vf )(1− 2ν)+ λ(1+ 2Vf + ν − 4νVf )]

σ

E

(46)

D̄0 =
−Vf (1− λ)(1+ ν)(1− 2ν)

3[2(1− Vf )(1− 2ν)+ λ(1+ 2Vf + ν − 4νVf )]

σ

E

(47)

Ā2 = 20ā3(1− ā2)(1+ ν)

g(ā, ν)

σ

E
(48)

B̄2 = 2(1+ ν)(196− 126ā5+ 175ā7− 420ν+ 200ν2− 25ν2ā7)

3g(ā, ν)

σ

E
(49)

C̄2 = 5ā3(1+ ν)(28+ 7ā7− 40ν + 5νā7)

3g(ā, ν)

σ

E
(50)

D̄2 = 2ā5(1+ ν)(28+ 7ā7− 40ν + 5νā7)

g(ā, ν)

σ

E
(51)

whereā3=Vf /0.74, and the formula of g(̄a, ν) can be
simplified numerically as follows

g(ā, ν) ≈ 392− 884.7ā6+ 718ā9+ ν(−840

+ 548ā3+ 260ā6)+ ν2(400− 354ā3)

Then, the stresses and displacements can be deter-
mined.

3. Results and discussion
The material property can be chosen as following:
Young’s modulus of the matrix is 3.5 GPa and Pois-
son’s ratio of matrix is 0.35.

(1) The bulk modulus of the rubber sphere is chosen
as 0.067 GPa.

We choose this value in order to compare with previ-
ous results, which used a low bulk modulus. In this case,
the rubber sphere can be, in fact, thought of as a void.
This may happen when the rubber sphere is debonded.

Fig. 5 gives the Young’s modulus and Poisson’s ratio
of the material. It can be seen that our results fit very
well with the results obtained by FEM using either a
cylinder model or a 3-D model, especially when the
volume fraction is not quite large.

Fig. 6 shows the maximum Von Mises stress con-
centration factors. It can be seen that our results agree
well with that of the cylinder model, but are relatively
smaller than that of the 3-D model, although the differ-
ence is still in the acceptable range of engineering. This
is possibly caused by the axisymmetric assumption in
our model or in the cylinder model. But, this difference
is also due to the fact that the elements of the Chen
and Mai’s 3-D model is not small enough, especially at
the places where the Von Mises stress should have the
maximum value. Based on their model, the elements
at such places are even rougher than at other places.
Fig. 6b shows the maximum stress concentration fac-
tors aboutσϕϕ. It can be seen that our results also have
a good agreement with that of the cylinder model.

Table I gives more results about Von Mises stress
concentration factors.

(2) The bulk modulus of the rubber sphere is chosen
as 2 GPa.

This is the typical bulk modulus of the rubber [4].
Fig. 7 shows the Young’s modulus and Poission’s ratio
of the material. It can be seen that our results fit very
well with both experimental observation and results
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TABLE I Von Mises stress concentration factors

R̄\ϕ0 0 15 30 45 60 75 90

(a) ā = 0.1 or Vf = 0.074%
0.1 0.79316 0.67277 0.50830 0.82110 1.3699 1.8043 1.9661
0.12 0.27426 0.42616 0.69115 0.94602 1.1520 1.2856 1.3319
0.2 0.65222 0.75018 0.93057 1.05334 1.07522 1.03214 1.00285
1 0.99868 0.99951 1.00127 1.00254 1.00249 1.00161 1.00112

(b) ā = 0.5 or Vf = 9.25%
0.5 0.78998 0.66476 0.48936 0.81332 1.37482 1.81684 1.98126
0.6 0.32012 0.45526 0.7085 0.96151 1.1705 1.308 1.35598
0.8 0.57307 0.72562 0.9846 1.15834 1.20223 1.16226 1.13148
1 0.89507 0.97847 1.13892 1.247 1.2549 1.19929 1.16466

(c) ā = 0.7 or Vf = 25.4%
0.7 1.17717 1.00146 0.68552 0.97748 1.68592 2.26097 2.47598
0.8 0.66963 0.69985 0.85002 1.15049 1.50057 1.77155 1.87264
0.9 0.68688 0.84292 1.14066 1.4008 1.56691 1.64604 1.66733
1 0.87221 1.04167 1.35109 1.57863 1.66152 1.64466 1.62209

(d) ā = 0.8 or Vf = 37.9%
0.8 1.77549 1.52824 1.03805 1.28955 2.21552 2.99516 3.28852
0.85 1.32035 1.17339 0.97811 1.32575 2.03619 2.62698 2.84993
0.9 1.10693 1.0831 1.1552 1.50807 2.01113 2.42223 2.5779
1 1.06544 1.21432 1.53645 1.86377 2.11519 2.26607 2.31558

(a) (b)

Figure 5 Young’s modulus (a) and Poisson’s ratio (b) of the composite material with low bulk modulus ratioλ = 0.017.

(a) (b)

Figure 6 Stress concentration factors of the composite material with low bulk modulus ratioλ = 0.017: (a) The maximum Von Mises stress
concentration factors; (b) The maximum stress concentration factors aboutσϕϕ .
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TABLE I I Von Mises stress concentration factors

R̄\ϕ0 0 15 30 45 60 75 90

(a) ā = 0.1 or Vf = 0.074%
0.1 1.17174 1.04823 0.79848 0.82990 1.23551 1.62432 1.77504
0.12 0.49335 0.57026 0.74437 0.93786 1.10448 1.21588 1.25497
0.2 0.69955 0.78737 0.95110 1.05964 1.06962 1.01723 0.98405
1 0.99906 0.99985 1.00151 1.00263 1.00244 1.00146 1.00093

(b) ā = 0.5 or Vf = 9.25%
0.5 1.21485 1.08635 0.81702 0.81595 1.2127 1.60351 1.7556
0.6 0.56599 0.6276 0.77666 0.95346 1.11266 1.22205 1.26094
0.8 0.67680 0.80093 1.02188 1.16693 1.18764 1.12953 1.09113
1 0.94818 1.02226 1.16477 1.25548 1.24806 1.1803 1.1406

(c) ā = 0.7 or Vf = 25.4%
0.7 1.71148 1.53289 1.13123 1.01564 1.47806 1.9792 2.17696
0.8 1.02757 1.00877 1.01621 1.15605 1.40257 1.62365 1.71024
0.9 0.93827 1.03384 1.23376 1.41273 1.51699 1.55507 1.56158
1 1.05548 1.18236 1.42409 1.59498 1.63151 1.57979 1.54325

(d) ā = 0.8 or Vf = 37.9%
0.8 2.4339 2.18373 1.60823 1.38171 1.97283 2.65145 2.92151
0.85 1.86927 1.70592 1.37686 1.3729 1.86051 2.37111 2.57405
0.9 1.56936 1.50227 1.41344 1.53731 1.88665 2.22747 2.3635
1 1.40255 1.48569 1.67991 1.888 2.04802 2.14106 2.17065

(a) (b)

Figure 7 Young’s modulus (a) and Poisson’s ratio (b) of the composite material with bulk modulus ratioλ = 0.5.

obtained by FEM using either a cylinder model or a
3-D model. But, the FEM results obtained by a simple
sphere model are quite different from the other results.
The inaccuracy of this simple sphere model may be
caused by the complete neglect of the remaining 26%
of the matrix or, in another word, average them into
spheres.

Fig. 8 gives the maximum Von Mises stress concen-
tration factors. It can be seen that our results are a little
smaller than those of the 3-D model, but the differ-
ence is still in the acceptable range of engineering. As
we mentioned before, this may be caused not only by the
axisymmetric assumption in our method or the cylinder
model, but also by the fact that the elements of the Chen
and Mai’s 3-D model are not small enough. However,

both works show similar results and they are proven to
be right.

Table II gives out more results about Von Mises stress
concentration factors.

It can be seen, from both Table I and Table II, that the
largest Von Mises stress always appears first at the 90◦
of the rubber sphere surface or, in another word, at the
equator of the rubber sphere surface. When the volume
fraction is of medium value such as 9.25% or 25.4% or
case (b) and case (c) in Table I, we find that the largest
Von Mises stress gradually turned to about 45◦ when
the radiusR increases. This conclusion fits well with
FEM analysis [7] and experimental observation of shear
bands [11]. An interesting finding is, when the volume
fraction is quite large such as 37.9%, the largest Von
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Figure 8 The maximum Von Mises stress concentration factors of the
composite material with bulk modulus ratioλ = 0.5.

Mises stress stays close to 90◦whenR increases. When
the volume fraction is very small such as 0.074% and as
R increases, the largest Von Mises stress first appears
at 90◦, and then turns to 45◦. Then, Von Mises stress
gradually becomes almost the same at every degree.

4. Conclusion
It can be seen that our predicted results fit quite well
with the experimental measurement of material proper-
ties and have nice agreement with previous FEM anal-
ysis results of stress concentration factors. Of course,
the previous FEM analyses also have disadvantages,
as we have mentioned in part of introduction. But, if
there is a nice agreement with the results of theoreti-
cal and FEM analyses, they can prove each other to be
basically right. So, the assumptions introduced in this
analysis are proved to be acceptable.

And, comparing with FEM analysis, the analytical
method is quite simple, needing only to solve a lin-
ear function group with 6 unknown parameters, and
formula are given out. So, it can be easily used to cal-
culate a huge amount of results and to understand the
deformation mechanisms to fit the requirements of en-
gineering.

It can be seen that the largest Von Mises stress always
first appears at the 90◦ of rubber sphere surface or, in

another word, at the equator of rubber sphere surface.
When volume fraction is of medium value, as radiusR
increases, the largest Von Mises stress gradually turned
to about 45◦. This conclusion fits well with FEM anal-
ysis and experimental observation of shear bands. An
interesting found is when the volume fraction is quite
large, the largest Von Mises stress nearly keep at 90◦
whenR increase. But, when the volume fraction is very
small, asR increases, the largest Von Mises stress first
appears at the 90◦, then turns to 45◦. Then, gradually
Von Mises stress become almost same at every degree.
This analysis may imply the explanation of shear band
in damage initiation for rubber toughened polymers.
But, of course, further plastic analyses are needed to
prove the inference.

Considering more parameters may gave a more ac-
curate analysis. This work is now in process.
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